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Why is in silico ADMET needed?
Traditionally, drugs were discovered by testing com-
pounds synthesized in time-consuming multi-step
processes against a battery of in vivo biological screens.
Promising compounds were then further studied in
development, where their pharmacokinetic properties,
metabolism and potential toxicity were investigated.
Adverse findings were often made at this stage1 (FIG. 1),
with the result that the project would be halted or re-
started to find another clinical candidate — an unac-
ceptable burden on the research and development bud-
get of any pharmaceutical company.

Today, this paradigm has been re-worked in several
ways. The testing of drug metabolism, pharmaco-
kinetics and toxicity is today done much earlier; that is,
before a decision is taken to evaluate a compound in the
clinic. However, the rate at which biological screening
data are obtained has dramatically increased, and
(ultra)high-throughput screening (HTS) facilities are
now common at large pharmaceutical companies and
at specialized biotechs2. In response to these develop-
ments, a new approach to chemistry — combinatorial
chemistry — has been adopted to feed these highly
efficient hit-finding machines. Combinatorial chem-
istry makes it possible to synthesize large series of
closely related libraries of chemicals using the same
chemical reaction and appropriate reagents. Such

libraries are then run through the HTS to find hits
around which further, more focused, series are designed
and synthesized in a next round.

As the capacity for biological screening and chemical
synthesis have dramatically increased, so have the
demands for large quantities of early information on
absorption, distribution, metabolism, excretion
(ADME) and toxicity data (together called ADMET
data). Various medium and high-throughput in vitro
ADMET screens are therefore now in use. In addition,
there is an increasing need for good tools for predicting
these properties to serve two key aims — first, at the
design stage of new compounds and compound
libraries so as to reduce the risk of late-stage attrition;
and second, to optimize the screening and testing by
looking at only the most promising compounds.

Drug-like properties. Which properties make drugs dif-
ferent from other chemicals? A number of studies have
been performed with the aim of answering this question
(for examples, see REFS 3–6). A particularly influential
example — the analysis of the World Drug Index
(WDI)5, which lead to Lipinski’s ‘rule-of-five’ — identi-
fies several critical properties that should be considered
for compounds with oral delivery in mind. These prop-
erties, which are usually viewed more as guidelines rather
than absolute cutoffs, are molecular mass <500 daltons
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DESCRIPTOR

A structural or physicochemical
property of a molecule or part 
of a molecule. Examples include
log P, molecular mass and polar
surface area.

PHARMACOPHORE

A pharmacophore is the
ensemble of steric and electronic
features that are necessary to
ensure the optimal
supramolecular interactions
with a specific biological target
structure and to trigger (or to
block) its biological response.

TRAINING

The building of a model using
part of the data (that is, the
training set), followed by
validation of the model using
the rest of the data (that is, the
validation set). Finally, the
model is tested using
compounds (the test set) not
used for training and validation.

When is ADMET data needed? The need for ADMET
information starts with the design of new compounds.
This information can influence the decision to proceed
with synthesis either via traditional medicinal chemistry
or combinatorial chemistry strategies. Obviously, at this
stage, computational approaches are the only option for
getting this information, but it is also acceptable that the
predictions are not perfect at this point. Once a series of
molecules is focused around a lead and is further opti-
mized towards a clinical candidate, more robust mecha-
nistic models will be required.

What ADME properties do we want to predict? A deeper
understanding of the relationships between important
ADME parameters and molecular structure and proper-
ties has been used to develop in silico models that allow
the early estimation of several ADME properties10–17.
Among other important issues, we want to predict
properties that provide information about dose size and
dose frequency (BOX 1), such as oral absorption, bioavail-
ability, brain penetration, clearance (for exposure) and
volume of distribution (for frequency).

As a result of the availability of experimental data in
the literature, considerable effort has gone into the
development of models to predict physicochemical
properties relevant to ADME, such as lipophilicity.
However, despite its importance, the prediction of phar-
macokinetic properties such as clearance, volume of dis-
tribution and half-life directly from molecular structure
is making slower progress owing to a lack of published
data. Similarly, the prediction of various aspects of
metabolism and toxicity is also underdeveloped.

What computational tools are used? Here, there are two
aspects to consider: data modelling and molecular
modelling, which have different toolboxes. Molecular
modelling includes approaches such as protein
modelling18, which uses quantum mechanical methods
to assess the potential for interaction between the small
molecules under consideration and proteins known to
be involved in ADME processes, such as cytochrome
P450s. This requires three-dimensional structural
information on the protein, which can be built by
homology modelling of related structures if the human
protein structure is not available. If no structural infor-
mation on the protein is available, an alternative way of
assessing the potential of a small molecule to interact
with a particular protein is to use PHARMACOPHORE models,
which are built from a superposition of known sub-
strates of the protein.

For data modelling, quantitative structure–activity
relationship (QSAR) approaches19 are typically applied.
QSAR and quantitative structure–property relationship
(QSPR) studies have been performed since the 1960s
with a variety of biological and physicochemical data.
These studies use statistical tools to search for correla-
tions between a given property and a set of molecular
and structural descriptors of the molecules in question.
Once such a QSAR model has been ‘TRAINED’ using a set
of molecules for which experimental data on the prop-
erty in question are available, it can be used to make

(Da), calculated octanol/water partition coefficient
(CLOGP) <5, number of hydrogen-bond donors <5 and
number of hydrogen-bond acceptors <10. In general,
such studies, and others not cited here, point to the most
important physicochemical and structural properties
characteristic of a good drug in the context of our current
knowledge. These properties are then typically used to
construct predictive ADME models and form the basis
for what has been called property-based design7. To a
certain extent, similar molecules can be expected to have
similar ADME properties8. This concept is the basis of
software called SLIPPER-2001, in which physicochemical
DESCRIPTORS and molecular similarity are used for the
prediction of properties such as lipophilicity, solubility
and fraction absorbed in humans9.

How are ADMET data obtained? The quest for early,
fast and relevant ADMET data is tackled in three ways.
First, a variety of in vitro assays have been further auto-
mated through the use of robotics and miniaturization.
Second, in silico models are being used to assist in the
selection of both appropriate assays, as well as in the
selection of subsets of compounds to go through these
screens. Third, predictive models have been developed
that might ultimately become sophisticated enough to
replace in vitro assays and/or in vivo experiments.
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Figure 1 | An analysis of the main reasons for attrition in
drug development1. In this analysis, published five years ago,
half of all failures were attributed to poor pharmacokinetics
(39%) and animal toxicity (11%). Such analyses clearly
indicated that these two areas should be focused on as early
as possible in the drug-discovery process (although it should
be noted that the interpretation of such data is often hampered
by the fact that compounds may have more than one flaw and,
as the project was halted, these might not always have been
identified). An even better approach would be to use predictive
tools in the design phase of the synthesis of compounds and
compound libraries.
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intuition, such as molecular size and hydrogen bonding.
Other descriptors are merely topological or quantum
chemical concepts, but can produce highly predictive
models, although these might be ‘black boxes’ for
most people.

Using appropriate descriptors, QSAR approaches —
ranging from simple multiple linear regression to
modern MULTIVARIATE ANALYSIS techniques, such as partial
least squares (PLS) — are now being applied to the
analysis of ADME data22. Data-mining and machine-
learning methods originally developed and used in other
fields are now also successfully being used for this pur-
pose. Examples of such methods include NEURAL NETWORKS

(NN), self-organizing maps (SOM; also called Kohonen
networks), RECURSIVE PARTITIONING (RP) and support
vector machines (SVM).

Good predictive models for ADMET parameters
depend crucially on selecting the right mathematical
approach, the right molecular descriptors for the particu-
lar ADMET endpoint, and a sufficiently large set of
experimental data relating to this endpoint for the valida-
tion of the model (BOX 2). Insight is growing as to which
of the available descriptors and QSAR tools are most
appropriate, although there often seems to be different
options with similar predictive power. In particular, more
needs to be learnt about how the size of the training set
influences the choice of the most capable model.

Prediction of physicochemical properties
The physicochemical properties of a drug have an
important impact on its pharmacokinetic (BOX 1) and
metabolic (BOX 3) fate in the body, and so a good under-
standing of these properties, coupled with their mea-
surement and prediction, are crucial for a successful
drug discovery programme.

Lipophilicity. Poor biopharmaceutical properties — in
particular, poor aqueous solubility and slow dissolu-
tion rate — can lead to poor oral absorption and
hence low oral bioavailability. In general, poor solubility
is related to high lipophilicity, whereas hydrophilic
compounds generally show poor permeability and
hence low absorption. Therefore, the measurement of
solubility and lipophilicity, as well as ionization con-
stants affecting these two properties, has been auto-
mated and integrated in the high-throughput drug
discovery paradigm.

The relationship between lipophilicity and phar-
macokinetic properties has been discussed by various
workers in the field23–25. Lipophilicity is the key
physicochemical parameter linking membrane per-
meability — and hence drug absorption and distribu-
tion — with the route of clearance (metabolic or
renal). Measuring the lipophilicity of a compound is
readily amenable to automation. The gold standard
for expressing lipophilicity is the partition coefficient
P (or log P to have a more convenient scale) in an
octanol/water system; alternatives include applica-
tions of immobilized artificial membranes (IAM),
immobilized liposome chromatography (ILC) and
liposome/water partitioning.

predictions on molecules not in the training set,
although, in general, reliable predictions are only possible
for molecules similar to those in the training set.

A wide variety of descriptors for use in QSAR
studies have been developed over the last 40 years20

(for example, those available in the program Dragon).
A subset of these descriptors is potentially useful for
predicting ADME properties. Indeed, with the
increased interest in the prediction of ADME proper-
ties, specifically tailored descriptors have already been
reported, for example, those in the VolSurf program21.
Some of the descriptors used are close to the chemist’s

Box 1 | Pharmacokinetics  

Pharmacokinetics is the study of the time course of a drug within the body and
incorporates the processes of absorption, distribution, metabolism and excretion
(ADME)76. Pharmacokinetic parameters are derived from the measurement of drug
concentrations in blood or plasma. The key pharmacokinetic parameters and their
importance for the dose regimen and dose size are shown in the figure80.

Most drugs are given orally for reasons of convenience and compliance. Typically, a drug
dissolves in the gastro-intestinal tract, is absorbed through the gut wall and then passes the
liver to get in to the blood circulation. The percentage of the dose reaching the circulation
is called the bioavailability. From there, the drug will be distributed to various tissues and
organs in the body. The extent of distribution will depend on the structural and
physicochemical properties of the compound. Some drugs can enter the brain and central
nervous system by crossing the blood–brain barrier. Finally, the drug will bind to its
molecular target, for example, a receptor or ion channel, and exert its desired action.
• Volume of distribution (Vd) is a theoretical concept that connects the administered

dose with the actual initial concentration (C
0
) present in the circulation:

Vd = Dose/C
0

Most drugs will bind to various tissues and in particular to proteins in the blood, such
as albumin. As only the free (unbound) drug will bind to the molecular target, the
concept of unbound volume of distribution is used:
Vdu = Vd/fu, where fu is the fraction unbound.

• Clearance (Cl) of the drug from the body mainly takes place via the liver (hepatic
clearance or metabolism, and biliary excretion) and the kidney (renal excretion).

By plotting the plasma concentration against time, the area under the curve (AUC)
relates to dose, bioavailability and clearance.
AUC = F x Dose/Cl

• Half-life (t
1/2

) — the time taken for a drug concentration in the plasma to reduce by
50% — is a function of the clearance and volume of distribution, and determines how
often a drug needs to be administered.
t

1/2
= 0.693 Vd/Cl

Volume of
distribution

Half-life Oral
bioavailability

Dosing regimen:
How often?

Dosing regimen:
How much?

Clearance Absorption

MULTIVARIATE ANALYSIS

A subset of statistical techniques
that can deal with larger sets of
molecular descriptors that is
aimed at finding relationships or
patterns in data sets. Examples
include multiple linear
regression (MLR) and partial
least squares (PLS).
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Hydrogen bonding. The hydrogen-bonding capacity of a
drug solute is now recognized as an important determi-
nant of permeability. In order to cross a membrane, a
drug molecule needs to break hydrogen bonds with its
aqueous environment. The more potential hydrogen
bonds a molecule can make, the more energy this bond-
breaking costs, and so high hydrogen-bonding potential
is an unfavourable property that is often related to low
permeability and absorption.

Initially, ∆logP — the difference between octanol/
water and alkane/water partitioning — was used as a
measure for solute hydrogen-bonding, but this tech-
nique is limited by the poor solubility of many com-
pounds in the alkane phase. A variety of computational
approaches have addressed the problem of estimating
hydrogen-bonding capacity, ranging from simple hetero-
atom (O and N) counts, the consideration of molecules
in terms of the number of hydrogen-bond acceptors
and donors, and more sophisticated measures that take
into account such parameters as free-energy factors30

and (dynamic) polar surface area (PSA)31. The latter
are easily calculated, and it is now believed that a 
single minimum-energy conformation is sufficient to
compute the PSA, instead of the more computation-
ally demanding and time-consuming dynamic polar-
surface-area calculation31. A fast fragment-based 
algorithm for PSA has been reported32, which allows
PSA calculations to be implemented in virtual screen-
ing approaches.

Permeability. Efforts have been undertaken to predict
the permeability of compounds through Caco-2 cells,
which serve as a model for human intestinal absorption,
in an approach called membrane-interaction quantita-
tive structure–activity relationships (MI-QSAR)33. But
one could ask the question,“Why model the model of
human absorption?”. A more direct approach is to
model processes that would address ‘pure’ measures of
permeability. These include octanol/water partitioning,
liposome partitioning, retention on immobilized arti-
ficial membranes (IAM), the parallel artificial mem-
brane-permeability assay (PAMPA) and binding to
liposomes measured by surface-plasmon-resonance
(SPR) biosensors.

Prediction of ADME and related properties
Absorption. For a compound crossing a membrane by
purely passive diffusion, a reasonable permeability
estimate can be made using single molecular properties,
such as log D or hydrogen-bonding capacity. However,
besides the purely physicochemical component con-
tributing to membrane transport, many compounds are
affected by biological events, including the influence of
transporters and metabolism (further discussed in later
sections). Many drugs seem to be substrates for trans-
porter proteins, which can either promote or hinder
permeability. In particular, the combined role of
cytochrome P450 3A4 (CYP3A4) and P-glycoprotein
(P-gp) in the gut as a barrier to drug absorption has
been well studied34. Currently, no theoretical SAR basis
exists to account for these effects.

There is continued interest in developing and
improving log P calculation programs, and there are
many such programs available. Most calculation
approaches rely on fragment values, although simple
methods based on molecular size and hydrogen-bonding
indicators for functional groups to calculate log P values
have also been shown to be extremely versatile22.

However, log P values can only be a first estimate of
the lipophilicity of a compound in a biological environ-
ment. For partition processes in the body, the distribu-
tion coefficient D (log D) — for which an aqueous
buffer at pH 7.4 (blood pH) or 6.5 (intestinal pH) is
used in the experimental determination — often pro-
vides a more meaningful description of lipophilicity,
especially for ionizable compounds. However, in our
experience, programs that can reliably predict log D are
scarce at present.

Solubility. The first step in the drug absorption process
is the disintegration of the tablet or capsule, followed by
the dissolution of the active drug. Obviously, low solu-
bility is detrimental to good and complete oral absorp-
tion, and so the early measurement of this property is of
great importance in drug discovery. Reflecting this need,
rapid, robust methods reliant on turbidimetry and
nephelometry have been developed to efficiently measure
the solubility of large numbers of compounds6,26.

Ideally, only soluble compounds would be synthe-
sized in a drug-discovery programme. Predictive solu-
bility methods — for example, neural networks —
might assist in this effort. However, at present, no
approaches are robust enough to accurately predict low
solubility. Many current predictive solubility programs27

use training data from different laboratories with varying
quality and different experimental conditions. Hopefully,
by measuring many compounds under standardized
conditions, current predictive models can be improved28.

pKa. As ionization can also affect the solubility,
lipophilicity (log D), permeability and absorption of a
compound, approaches have been developed for the
rapid measurement of pKa values of sparingly soluble
drug compounds. Using experimental data reported in
the literature, several approaches have been used to
develop pKa calculators. Programs include ACD/pKa
(ACD), Pallas/pKa (Compudrug) and SPARC29.

NEURAL NETWORKS 

Neural networks are
computational models that are
based on the principles of the
functioning of the brain. They
can be used to model nonlinear
relationships between dependent
(biological endpoint to be
predicted) and independent
(molecular and structural
descriptors) variables. Examples
include back-propagation and
self-organising maps (SOM;
also called Kohonen neural
networks).

RECURSIVE PARTITIONING 

OR DECISION TREES

A supervised learning method
producing a tree-structured
series of rules to predict a
particular property using a set of
molecular descriptors as input.

Box 2 | The need for good data

Clearly, larger databases of marketed drugs are required to establish more robust models
to predict various ADME properties, including drug–drug interactions. Several
published ADME data sets are available for data modelling13,36,47,105–107, but the quality of
the data and the number of available training examples remain important issues. In the
future, service providers such as Cerep, Novascreen and Cyprotex will be able to offer
larger data sets with which to build more robust models.

In a recent symposium, the question of whether the Internet can help as a resource 
to collect relevant ADME data was addressed108. The current opinion is that there are
some good and well-maintained websites available, but unfortunately also many of
questionable use in research owing to a lack of control of data quality or reference to 
the original data.
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number of in vitro data inputs. They are based on
advanced compartmental absorption and transit
(ACAT) models, in which physicochemical concepts,
such as solubility and lipophilicity, are more readily
incorporated than physiological aspects involving trans-
porters and metabolism. In more recent versions,
attempts are being made to model the influence of
transporters, in addition to gut-wall metabolism, on
gastrointestinal uptake. For example, the oral bioavail-
ability of ganciclovir in dogs and humans was simulated
using a physiologically based model that utilized many
biopharmaceutically relevant parameters, such as the
concentration of ganciclovir in the duodenum,
jejunum, ileum and colon at a variety of dose levels and
solubility values. The simulation results demonstrated
that the low bioavailability of ganciclovir is limited by
compound solubility rather than permeability due to
partitioning, as previously speculated44.

Bioavailability. Recently, the first attempts to predict
bioavailability directly from molecular structure have
been published. However, this is not an easy task, as
bioavailability depends on a superposition of two
processes: absorption and liver first-pass metabolism.
Absorption in turn depends on the solubility and per-
meability of the compound, as well as interactions with
transporters and metabolizing enzymes in the gut wall.
Important properties for determining permeability
seem to be the size of the molecule, as well as its capacity
to make hydrogen bonds, its overall lipophilicity and
possibly its shape and flexibility. Molecular flexibility,
for example, as evaluated by counting the number of
rotatable bonds, has been identified as a factor influenc-
ing bioavailability in rats46.

Yoshida and Topliss47 trained a QSAR model with log
D at pH 7.4 and 6.5 as inputs for the physicochemical
properties and the presence/absence of typical functional
groups most likely to be involved in metabolic reactions
as the structural input. This approach used ‘fuzzy adap-
tive least squares’, and drugs could be classified into one of
four predefined bioavailability ranges. Using this
approach, a new drug can be assigned to the correct class
with an accuracy of 60%.An unpublished effort based on
classification using the SIMCA approach and which
seems to achieve similar success has also been reported12.

In another approach, regression and recursive parti-
tioning have been used48. In this study, 591 compounds
were included and a set of 85 structural descriptors was
generated. The authors noted that the mean error in the
experimental data used to generate the model is ~12%,
with an increase in error for well-absorbed drugs.
Therefore, the models should not be expected to gener-
ate predictions that are more accurate than the variabil-
ity inherent in the biological measurements.

Genetic programming, which is a specific form of
evolutionary programming, has recently been used for
predicting bioavailability49. The results show a slight
improvement compared with the Yoshida-Topliss
approach, although a direct comparison is difficult
owing to a different selection of the bioavailability
ranges of the four classes.

In vitro methods, such as Caco-2 or Madin-Darby
canine kidney (MDCK) monolayers, are widely used to
make oral absorption estimates. These cells also express
transporter proteins, but only express very low levels of
metabolizing enzymes. Similarly, there is a continued
interest in finding a relevant in vitro screen for estimating
the permeability of drugs for diseases of the central
nervous system (CNS). The bovine microvessel endo-
thelial cell (BMEC) model has been explored as a possible
in vitro model of the blood–brain barrier35.

Considerable effort has also gone into the develop-
ment of in silico models for the prediction of oral
absorption36–42. The simplest models are based on a single
descriptor, such as log P or log D, or polar surface area,
which is a descriptor of hydrogen-bonding potential31.
Different multivariate approaches, such as multiple linear
regression, partial least squares and artificial neural
networks41, have been used to develop quantitative
structure–human-intestinal-absorption relationships. In
all approaches, hydrogen bonding is considered to be a
property with an important effect on oral absorption.

Absorption-simulation programs, such as Gastro-
Plus43 and Idea44, might eventually become a valuable
tool in lead optimization and compound selection.
These programs, which have recently been compared45,
are computer simulation models developed and vali-
dated to predict ADME outcomes, such as rate of
absorption and extent of absorption, using a limited

Box 3 | Metabolism  

The body will eventually try to eliminate xenobiotics, including drugs. For many drugs,
this first requires metabolism or biotransformation, which takes place partly in the gut
wall during uptake, but primarily in the liver. The figure shows where metabolism occurs
during the absorption process. The fraction of the initial dose appearing in the portal
vein is the fraction absorbed, and the fraction reaching the blood circulation after the
first-pass through the liver defines the bioavailability of the drug.

Traditionally, a distinction is made between phase I and phase II metabolism, although
these do not necessarily occur sequentially. In phase I metabolism, a molecule is
functionalized, for example, through oxidation, reduction or hydrolysis. The most
important enzymes involved are the cytochrome P450s. In particular, CYP3A4, CYP2D6,
CYP2C9 and CYP2C19 are important for the metabolism of drugs in humans. In phase II
metabolism, the functionalized drug molecule is further transformed in so-called
conjugation reactions. These include for example, glucuronidation and sulfation, as well as
conjugation with glutathione. It should be noted that the metabolism in animals might be
different from that in humans, and therefore the prediction of human pharmacokinetics
and metabolism from animal data might not be straightforward.

Dose Absorption

Gut
wall

Portal
vein Liver

To faeces Metabolism Metabolism

Bioavailability
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Transporters. Transport proteins are found in most
organs involved in the uptake and elimination of
endogenous compounds and xenobiotics, including
drugs61. As mentioned above, a better understanding of
the role of transporters in oral absorption and uptake in
the brain62 and liver is of particular interest.
Consequently, several in vitro systems, some with double-
transfected transporters, are being developed and these
might become a valuable tool in screening for optimal
pharmacokinetic properties.

One of the best-studied transporters is P-gp, a mem-
ber of the ATP-binding cassette (ABC) transporter family
that was identified first as the transporter responsible for
multiple-drug resistance (MDR) observed with antitu-
mour agents.A better understanding of the relationships
between the structure of P-gp binders (substrate or
inhibitor) has been obtained using QSAR, as well as from
pharmacophore and protein modelling. Such models for
P-gp function have recently been reviewed63. Although
this paper focused on MDR reversers, the QSAR studies
discussed demonstrate the first steps towards a better
understanding of P-gp SAR. A crude filter to discrimi-
nate between P-gp substrates and non-substrates — with
an accuracy of 63% — has been suggested64. However,
even for large virtual combinatorial libraries, this does
not seem good enough, as it is too close to random.

A set of well-defined structural elements required
for interaction with P-gp has been derived from the
analysis of a set of known P-gp substrates65–67. The key
recognition elements in this model are two or three
electron-donor groups (hydrogen-bond acceptors)
with a fixed spatial separation. However, this prelimi-
nary model does not take into account the direction-
ality of the hydrogen bonds, or the conformational
flexibility of certain compounds. Models are now suffi-
ciently sophisticated to begin to rationalize earlier
observations for well-known P-gp substrates in terms
of molecular weight, lipophilicity, hydrogen bonding,
presence of a basic nitrogen and so on. The program
MolSurf has been used to generate descriptors to build
a PLS model to predict P-gp-associated ATPase activ-
ity. This model identified the main contributing

A method for predicting bioavailability using adap-
tive fuzzy partitioning (AFP) has recently been pre-
sented at conferences50. The best molecular descriptors
were selected with a genetic algorithm, and in the next
step SOMs were used for the classification, which cor-
rectly classified the molecule in the right bioavailability
class in 64% of cases.

The methods described above demonstrate that at
least qualitative (binned) predictions of oral bioavail-
ability seem tractable directly from molecular structure.
Approaches using in vitro data are also under continual
development. For example, a graphical approach for
bioavailability prediction based on the combined mea-
surement of Caco-2 flux and microsomal stability was
recently presented51 that uses a reference plot to make a
prediction of bioavailability for a new compound.
Typically, the prediction will classify a compound as
0–20%, 20–50% or 50–100% bioavailable. Extending
this approach to include solubility, for example, might
increase its predictive power.

Blood–brain barrier penetration. Drugs that act in the
CNS need to cross the blood–brain barrier (BBB) to
reach their molecular target. By contrast, for drugs
with a peripheral target, little or no BBB penetration
might be required in order to avoid CNS side effects. A
key issue in the development of models to predict BBB
penetration is the use of appropriate data to describe
brain uptake of compounds. There is an ongoing dis-
cussion about the use of total-brain data versus extra-
cellular fluid (ECF) or cerebro-spinal fluid (CSF) data
or data generated by microdialysis52. Another point of
debate relates to the time point of measurement, which
is clearly crucial. Overall, data in the literature are
rather limited in number, and are also generated from
different experimental protocols. All of these factors
limit the development of highly predictive models of
BBB penetration.

Nevertheless, a variety of models for the prediction
of uptake into the brain have been developed53–59.
‘Rule-of-five’-like recommendations regarding the
molecular parameters that contribute to the ability of
molecules to cross the BBB have been made to aid
BBB-penetration predictions53; for example, molecules
with a molecular mass of <450 Da or with PSA <100 Å2

are more likely to penetrate the BBB. Most of the early
predictive models are based on a multiple linear
regression approach and many use physicochemical
properties60. One example of such a model is based on
the combination of only three descriptors, namely the
calculated octanol/water partition coefficient, the
number of hydrogen-bond acceptors in an aqueous
medium and the polar surface area55. More recently,
other multivariate techniques have been tried using new
ADME-tailored properties, such as the Volsurf approach,
in which a variety of three-dimensional molecular field
descriptors are transformed into a new set of descrip-
tors, which are inputs for the construction of a model
using a discriminant partial least squares procedure56,57.
As this method is based on computed properties only, it
can be used as a tool in virtual screening.

Figure 2 | Model of the CYP2D6 metabolizing enzyme87.
This shows the secondary and teritary structure of the enzyme.
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THREE-DIMENSIONAL-QSAR P-gp model was generated using
the Catalyst program71. This model allows qualitative
rank-order and predicts IC

50
values for P-gp inhibitors.

Other transporters potentially involved in limiting
the oral uptake of drugs include the MDR-associated
proteins MRP1 and MRP2, and the recently discovered
breast-cancer-resistance protein (BCRP). It is important
to expand our knowledge about these transporters, with
a view to developing better tools for the prediction of
oral uptake. Other transporters could also have a key
role in hepatic uptake72 and in order to understand their

descriptors for predicting ATPase activity as the size of
the molecular surface, polarizability and hydrogen-
bonding potential68.

Some initial attempts have also been made to under-
take P-gp modelling69. Using the primary sequence of
human P-gp and a low-resolution structure, a pseudo-
receptor has been constructed and attempts have been
made to model its interaction with MDR modulators.
A P-gp pharmacophore model consisting of two hydro-
phobic points, three hydrogen-bond-acceptor points and
one donor point was reported70. In another approach, a

THREE-DIMENSIONAL-QSAR

A technique that uses the three-
dimensional molecular
structures to derive a quantitative
relationship between a biological
property and properties derived
from these three-dimensional
structures, for example, related to
their size and electrostatic fields.

Table 1 | Sources for commercial ADMET software

Company/Institute Software product URL

Biotechs

Aber Genomic Computing Gmax-Bio www.abergc.com

Accelrys (Pharmacopeia) Cerius2, C2.ADME, Topkat www.accelrys.com

Advanced Chemistry Development ACD/logP, ACD/logD, ACD/pKa  www.acdlabs.com

Amedis Pharmaceuticals www.amedis-pharma.com

Arqule www.arqule.com/insilico/camitro.html

Biobyte CLOGP, CQSAR www.biobyte.com

Bioreason LeadPharmer www.bioreason.com

Chemical Computing Group Molecular Operating Environment (MOE) www.chemcomp.com

Compudrug Pallas, MetabolExpert, HazardExpert www.compudrug.com

Daylight MedChem db, CLOGP www.daylight.com

EduSoft Molconn-Z www.edusoft-lc.com

Entelos Physiolab www.entelos.com

Genomatica www.genomatica.com

Iconix DrugMatrix www.iconixpharm.com

IDBS www.id-bs.com

Incyte DrugMatrix www.incyte.com

LeadScope LeadScope, ToxScope www.leadscope.com

Lhasa DEREK, Meteor www.chem.leeds.ac.uk/luk

Lion Bioscience iDEA www.lionbioscience.com

Logichem Oncologic www.logichem.com

MDL Information Systems MDL QSAR, MDL Discovery Predictive www.mdl.com
Science, Metabolite db, Toxicity db

Molecular Discovery VolSurf www.moldiscovery.com

Molecular Networks KMAP, Petra www.mol-net.de

Multicase M-CASE, Meta www.multicase.com

Omniviz Omniviz Chemoinformatics www.omniviz.com

Pharma Algorithms Advanced QSAR Builder www.ap-algorithms.com

pION Absolv, Algorithm Builder www.pion-inc.com

Schrödinger QikProp www.schrodinger.com

SciVision ToxSys, QSARIS www.scivision.com

SimCyp SimCYP www.simcyp.com

SimulationsPlus GastroPlus, QMPRPlus www.simulations-plus.com

Sirius Analytical Instruments AbSolv www.sirius-analytical.com

Spotfire Spotfire www.spotfire.com

Syracuse Research www.syrres.com/default.htm

Tripos VolSurf www.tripos.com

Umetrics SIMCA www.umetrics.com

ZyxBio OraSpotter www.zyxbio.com
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154 drugs, models were generated that correctly pre-
dicted the percentage of drug bound in plasma for ~80%
of the test compounds with an average error of ~14%
(REF. 78). A generic model to predict drug-association
constants to human serum albumin (HSA) using a
pharmacophoric-similarity concept and PLS was
reported using a data set of 138 compounds79.

Volume of distribution. The volume of distribution,
together with the clearance rate, determine the half-life
of a drug and therefore its dose regimen, and so the
early prediction of both properties would be of great
benefit. When the logarithm of the volume of distribu-
tion is plotted against log D, a scatter plot is obtained
and no correlation is observed. However, when these
data are corrected for plasma-protein binding, the
resulting plot of the logarithm of the unbound volume
of distribution (log Vdu; BOX 1) against log D reveals a
clear linear trend, with log Vdu increasing at higher
lipophilicities23. This can be used as a simple guide in
modifying and optimizing the Vdu.

Recently, an approach for predicting volume of dis-
tribution values has been presented that used experi-
mental distribution coefficients at pH 7.4 in
octanol/water, the ionization constant (pKa) of the
compounds and measured plasma-protein-binding
data80. In principle, this approach could be fully compu-
tational, as predictive models are available for log P and
pKa, and models for plasma-protein binding are under
development, as described above. Several groups are
exploring such fully computational models.

Clearance. Clearance is an important pharmacokinetic
parameter that defines, together with the volume of dis-
tribution, the half-life, and thus the frequency of dosing,
of a drug. For a series of adenosine A

1
receptor agonists,

not only their clearance, but also their volume of distribu-
tion and protein binding, could be predicted using the
multivariate PLS technique81. As pointed out by the
authors, further improvements might be obtained using
nonlinear models, such as neural networks, although the
application of neural networks is still a relatively new
data-modelling method in the field of pharmacokinetics.

It was concluded from an exploratory study using
neural networks in addition to multivariate techniques
that human hepatic drug clearance was best predicted
from human hepatocyte data, followed by rat hepato-
cyte data. In the studied data set, however, animal in vivo
data did not significantly contribute to the predictions82.
However, only a rather limited data set was used in this
study, and generalizations from these results should be
made with caution at this stage. This study also demon-
strates that computational predictions can be successful
if the models can use experimental data as part of their
input. Obviously, however, these models can then only
be used at stages in the drug discovery process where
such experimental data are being generated.

Half-life. The half-life of a drug is a hybrid concept that
involves clearance and volume of distribution, and it is
arguably more appropriate to have reliable estimates of

effects on pharmacokinetics it might be necessary to
model them. For example, some modelling work on the
peptide transporter (PepT1) and the apical sodium-
dependent transporter (ASBT), which might be
involved in active drug uptake, has been reported73.

Dermal and ocular penetration. Although much atten-
tion has been given to oral absorption models, some
drugs are administered through alternative routes, such
as the skin or eye. For many years, QSAR models have
been developed to predict the optimal percutaneous
penetration74 (a recent example is given in REF. 75). These
models resemble oral absorption and BBB models, and
often employ very similar properties and descriptors. The
existing transdermal models are typically a function of
the octanol/water partition coefficient and terms that
have been associated with aqueous solubility, including
hydrogen-bonding parameters, molecular weight and
molecular flexibility. Commercial models for the predic-
tion of solute-permeation rates through the skin are avail-
able, for example, the QikProp and DermWin programs.
However, it seems that there is little difference between
the commercially available models and models published
in the literature. Most, if not all, of the published skin-
permeation models have been constructed from various
compilations of published skin-permeation data sets.

Plasma-protein binding. It is generally assumed that
only free drug can cross membranes and bind to the
intended molecular target76, and it is therefore impor-
tant to estimate the fraction of drug bound to plasma
proteins. Drugs can bind to a variety of particles in the
blood, including red blood cells, leukocytes and platelets,
in addition to proteins such as albumin (particularly
acidic drugs), α

1
-acid glycoproteins (basic drugs),

lipoproteins (neutral and basic drugs), erythrocytes and
α,β,γ-globulins.

A tentative sigmoidal relationship is observed
between plasma-protein binding (in percentage of drug
bound or unbound) and log D at pH 7.4 (REF. 23). As
there is a considerable scatter of the data around these
sigmoidal trends, adding further descriptors might lead
to better predictive models. One attempt in this direc-
tion is based on 107 descriptors and uses a technique
called genetic function approximation (GFA)77. For a set
of 80 compounds, a QSAR with 12 descriptors and a
correlation coefficient r = 0.91 between measured and
predicted serum-albumin binding data was obtained77.
Using the multiple computer-automated structure eval-
uation (M-CASE) program and protein-affinity data for

Table 2 | Sources for commercial ADMET software

Company/Institute Software product URL

Data providers

Cerep Bioprint www.cerep.fr

Cyprotex Cloe PK www.cyprotex.com

Novascreen Profile www.novascreen.com

TNO Pharma www.pharma.tno.nl/
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lead to issues related to the polymorphic nature of some
of these enzymes and to drug–drug interactions.

QSAR and molecular modelling approaches for
predicting metabolism could have an increasingly
important role as a possible alternative to in vitro
metabolism studies. In silico approaches to predicting
metabolism can be divided into QSAR and three-
dimensional-QSAR86 studies, protein and pharma-
cophore models87,88 and predictive databases. Some of
the first-generation predictive-metabolism tools 
currently require considerable input from a computa-
tional chemist, whereas others can be used as rapid 
filters for the screening of virtual libraries, for exam-
ple, to test for CYP3A4 liability89.

Perhaps the most intellectually satisfying molecular
modelling studies are those based on the crystal struc-
ture of the metabolizing enzymes (FIG. 2). Historically,
these structure-based models have relied on crystal-
structure information from bacterial homologues87,88.
However, the crystal structures of the more relevant
mammalian cytochrome P450s have been announced
(CYP3A4 and CYP2C9) and the structure of CYP2C5
is publicly available.

Early predictions of the vulnerability to metabolism
of certain positions in the molecule might help to elimi-
nate metabolic liabilities. An example of such an
approach is the use of reaction energetics to develop a
predictive CYP3A4 metabolism model90. Another pro-
gram, called MetaSite (Cruciani, G.; abstract presented
at Euro QSAR 2002), is based on a pharmacophore
representation obtained from interaction fields for the
protein structure and a pharmacophoric fingerprint for
the potential substrate.

Several approaches that use databases to predict
metabolism are available or under development91,
including expert systems, such as MetabolExpert
(Compudrug), META (MultiCASE) or Meteor
(Lhasa), and the databases Metabolite (MDL) and
Metabolism (Accelrys)92. Ultimately, such programs
might be linked to computer-aided toxicity prediction
on the basis of quantitative structure–toxicity relation-
ships and expert systems for toxicity evaluation such as
DEREK (Lhasa) and MultiCase.

these two properties instead. Nevertheless, neural net-
works have been used to predict drug half-life values of
antihistamines83. Unfortunately, the method relied on
topographical coding of the molecule using an in-house
program, and also involved a number of strongly inter-
correlated calculated properties such as log P, pKa, mol-
ecular mass and molar refractivity.

Physiologically based pharmacokinetic modelling.
There are several approaches to pharmacokinetic
modelling, including empirical, compartmental, clear-
ance-based and physiological models. In the latter, full
physiological models of blood flow to and from all
organs and tissues in the body are considered. Such
physiologically based pharmacokinetic (PBPK) models
can be used to study concentration–time profiles in
individual organs and in the plasma84,85. In the future,
we expect that PBPK models will be linked to absorp-
tion modelling, as discussed above, and the first examples
of this type of linkage are Cyprotex’ Cloe PK and
Simulations Plus’ GastroPlus.

Pharmacokinetic/pharmacodynamic (PK/PD)-
modelling links dose–concentration relationships (PK)
and concentration–effect relationships (PD). This
approach facilitates the description and prediction of
the time course of drug effects resulting from a certain
dose regimen. Further progress in understanding
PK/PD relationships and the availability of specialized
software not further discussed here, in combination
with advanced PBPK modelling, will greatly enhance
our capability to perform reliable PK predictions in
humans. The linkage of absorption simulation and
PBPK models will bring us closer to a full simulation of
drug disposition, one that will hopefully be based on
only a few properties that can be readily measured in
vitro and/or computed.

Metabolism. Several aspects of metabolism are relevant to
drug discovery, including the rate and extent of metabo-
lism (turnover), the enzymes involved and the products
formed, each of which can give rise to different concerns.
The extent and rate of metabolism affect clearance,
whereas the involvement of particular enzymes might

Table 3 | Sources for commercial ADMET software

Company/Institute Software product URL

Academics/consultants

M. G. Ford (Centre for Molecular Paragon www.cmd.port.ac.uk/cmd/software.shtml
Design, University of Portsmouth, UK)

Hall Associates Consulting Molconn-Z

J. McFarland Hybot, Slipper reckon.dat@attglobal.net

V. Poroikov (Institute of Biomedical PASS www.timtec.net/software/pass.htm
Chemistry, Russian Academy of Medical 
Sciences, Moscow, Russia)

O. A. Raevsky (Department of Computer- Hybot, Slipper www.ibmh.msk.su/molpro/
Aided Molecular Design, Russian Academy
of Sciences, Moscow, Russia)

P. Sjöberg MolSurf qemist@swipnet.se

University of Washington Drug Interaction Database depts.washington.edu/didbase/
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systems. The primary emphasis of the current software
packages is carcinogenicity93 and mutagenicity, although
some packages do also include models and/or know-
ledge bases for other end-points, such as teratogenicity,
irritation, sensitization, immunotoxicology and neuro-
toxicity. There is currently an unmet need for in silico
predictive toxicology software94,95 for other end-points
important in drug development, such as QT prolon-
gation96,97, hepatotoxicity and phospholipidosis98.

Drug–drug interactions. Patients often receive several
medications at the same time, and if the drugs involved
compete for the same enzymes to be metabolized, or if
the same transporters are involved in transporting the
drugs across membranes, this can lead to undesired
effects with possibly even fatal results. Therefore, during
drug development, new chemical entities intended for
use as a new drug are now often screened in vitro for
potential drug–drug interactions.

The quantitative prediction of such interactions has
been attempted in a system called Q-DIPS (quantitative
drug interactions prediction system)99.Another approach
is the SimCYP project at the University of Sheffield, which
integrates human physiological, anatomical and genetic
information with human in vitro data, and which can

In silico prediction of toxicity issues
Toxicity is responsible for many compounds failing to
reach the market and for the withdrawal of a signifi-
cant number of compounds from the market once
they have been approved. It has been estimated that
~20–40% of drug failures in investigational drug
development can be attributed to toxicity concerns
(for example, as shown in FIG. 1)1.

The existing commercially available in silico tools for
forecasting potential toxicity issues can be roughly
classified into two groups. The first approach uses
expert systems that derive models on the basis of
abstracting and codifying knowledge from human
experts and the scientific literature. The second
approach relies primarily on the generation of descrip-
tors of chemical structure and statistical analysis of the
relationships between these descriptors and the toxico-
logical end-point. Recent reviews have compared and
contrasted the commercially available in silico toxicology
software93–95. As has been previously mentioned, the
most important part of any in silico approach is the
quality of the underlying data used to develop the models
(BOX 2). The limited availability of public-domain toxi-
cology data has limited the number of toxicological
end-points forecasted by the commercially available

Optimization problem

Poor systemic exposure

Distribution

Volume of distribution

Blood brain
barrier

Plasma protein
binding

Transporters

P-gp MRP OATP OCTP

Renal Plasma Hepatic

Metabolic

Cytochromes P-450 Others

Which conjugate?Which P-450?

Sulphate Amino acidsGlucuronide

1A2, 2C9, 2C19, 2D6, 3A4
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Type II
binding Mechanistic
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Poor oral bioavailability

Figure 3 | An analysis of the crucial ADME processes for which predictive models are available or are being developed11.
This figure does not suggest a logical flow in ADME studies, but rather tries to group the problem areas for which predictive
models could be of help.
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Outlook
Commercial software. Software vendors traditionally
active in the field of molecular modelling and/or QSAR
have also recently began to create modules to assist
high-throughput screening and combinatorial library
design, as well as the estimation of ADME and toxicity
properties101. The key players developing this software
are listed in TABLES 1, 2 and 3. This review does not intend
to describe nor evaluate each of the individual products.
Products and vendors change rapidly and the interested
reader is encouraged to obtain current product infor-
mation from the vendor’s websites, specialized confer-
ences or recent reviews94.

How far are we from prediction paradise? Compu-
tational chemists are now using ADMET filters in the
very early stages of drug discovery, for example, in
library design and virtual screening. The first generation
of predictive ADMET models are now commercially
available and others have been published and can now
be implemented2,102. In the short term, these tools
should allow chemists and drug-metabolism scientists
to concentrate on compounds with the highest chances
of meeting the required pharmacokinetic and safety
criteria, and should contribute to a reduction in late-
stage compound attrition.

However, the models are clearly only as good as the
data they are based on, and, unfortunately, in most
cases, the data sets are rather limited. It is worth not-
ing that even though the database for log P prediction
has more than 10,000 compounds, the predictions
derived from these data are far from perfect. This is
because of the many innovative chemical groups that
appear in modern drug-discovery programmes that
are not part of the legacy database used to derive the
model(s). So, the learning/modelling will need to be a
ongoing, iterative process in which the models are
continuously refined. Driven by the changes in the
working paradigm in the pharmaceutical and

simulate PK data for a population of individuals.
Published data on drug–drug interactions are now avail-
able in a database at the University of Washington, which
will facilitate future model development.

Induction of drug metabolism. A further concern in
drug metabolism related to drug–drug interactions is
the induction of drug metabolism caused by some
drugs. Recently, two related nuclear hormone receptors
— the pregnane X receptor (PXR) and the constitutive
androstane receptor (CAR) — have emerged as trans-
criptional regulators of cytochrome P450 expression100.
Drugs that bind to these receptors can induce the
expression of cytochrome P450s, thereby accelerating
the metabolism of other drugs that are substrates for
these enzymes. In particular, PXR is a key regulator of
the inducible expression of CYP3A, which metabolizes
50–60% of all prescription drugs, and therefore meth-
ods to identify compounds that will not activate PXR
could be valuable in avoiding drug–drug interactions.
At present, such approaches to predict the induction of
drug metabolism are in an early phase of development.

Chemistry Biology

ADME

a  1990s b  2000+

Combinatorial
chemistry

High-throughput
screening

ADME

Figure 5 | The evolution of drug discovery and the changing role of ADME studies. The
transition from a | the classical project-collaboration approach between chemistry, biology and
drug metabolism (ADME) groups in the 1990s to b | a much more automated world at the start of
this millennium in which combinatorial chemistry (CombiChem), high-throughput screening and
ADME studies are linked together in a streamlined fashion. Note that these three activities can
even be carried out by separate companies. Furthermore, the wide introduction of in silico and
high-speed in vitro methods could redefine the traditional meaning of ADME to Automated
Decision-Making Engine.

Solubility % absorbed

Clearance

Volume of
distribution

log D Dose

Toxicity

Hydrogen-bonding
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% bioavailable
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Figure 4 | Towards prediction paradise. As more and more robust models for the crucial endpoints in the drug discovery process
become available, we will increasingly be in a position to map out the potential qualities of a new chemical purely from its molecular
structure and appropriate descriptors using a suite of predictive models. These range from models for simple physicochemical
properties, such as hydrogen bonding-capability, molecular mass, solubility and lipophilicity (log D), to models for ADME properties,
such as percentage drug absorbed and bioavailable, clearance, volume of distribution and half-life, to complex endpoints, such as
the binding (IC50) to the molecular target of the new drug, its required dose and toxicity potential.
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would be a combination of models for log D, solubil-
ity, permeability, CYP3A4 metabolism and efflux and
influx mediated by transporters such as P-gp.

A recent report on in silico technology estimates
that by 2006 ~10% of pharmaceutical R&D expendi-
ture will be on computer simulation and modelling, a
figure set to rise to 20% by 2016. It seems clear that as
a whole, the pharmaceutical R&D landscape will fur-
ther change104, and that computational ADMET will
be part of this change.

In the next 10 years or so, building on what is
already starting in several companies, the degree of
automation in traditional drug metabolism depart-
ments will continue to increase, and fully automated
medium- and high-throughput in vitro assays will be
used alongside in silico modelling and data interpreta-
tion. Whereas ADME today stands for absorption, dis-
tribution, metabolism and excretion, in the future we
might instead speak of the ‘automated decision-making
engine’ (FIG. 5). There could well be two types of ADME
technology in the future: the early discovery paradigm
(based on in vitro and in silico approaches) and the reg-
ulatory one (close to today’s approach). In any case,
there is much basic science that needs to be done first,
making this an especially exciting time to be involved in
ADMET prediction and drug discovery.

biotechnology industry, in silico approaches will
inevitably find their place. As expressed recently, “the
insilicoids are coming and will save the world”103.

During the next few years, the range of models will
further expand to include, for example, metabolism
by non-P450 enzymes, models for various trans-
porters, predictors for volume of distribution, plasma
protein binding, and so on (FIG. 3). The ability to con-
tinuously adapt and refine the existing models by
building on larger and higher-quality data sets will be
crucial to the success of the in silico approaches.
FIGURE 4 outlines the key parameters in the prediction
of a safe drug given in an acceptable dose, which it is
ultimately hoped will be reliably obtainable from mol-
ecular structure and appropriate descriptors using a
suite of predictive models.

Today, most models are rule-based and may use
descriptors that are not easily understood by the
chemist and not easy to translate into better molecular
structures. Clearly, there is a need for a new generation
of mechanism-based models that will provide the
required understanding and which can be successfully
used for prediction and simulation of ADMET proper-
ties. Such second-generation predictive models could
be combinations of models (that is, meta-models) for
the partial processes; for example, oral absorption
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